

Integrated M.Sc. Mathematics Academic Year : 2019 - 20 Semester : IX Subject: 060090902 Calculus of Variations and Integral Equations **Teaching Schedule Course Objectives:** To introduce the methods and concepts to solve integral equations and problems through calculus of variations. Course outcomes: Upon completion of the course, students shall be able to CO1: familier with concept of variations. **CO2:** derive some classical differential equations by using principles of calculus of variations. **CO3:** have acquired sound knowledge of Green's function, fredholm and Volterra integral equations of calculus of variations. **CO4:** solve simple IVP and BVP by using calculus of several variable. **CO5:** reduce the differential equation to integral equations. **CO6:** exposed to the decomposition method. Teaching No. of **Reference Chapter/ Evaluation** Sub Unit Methodology Topics **Active Learning Activities** Unit Lect.(s) **Additional Reading** Parameter to be used **Unit 1: Introduction of calculus of variations** Maxima and minima 1.1 1 1.2 1 Boundary conditions and Unit Test -1 Transition conditions For Slow Learner: Assignment-1 Ch#2 Students must write answer of 1.3 2 Variational notation Methods of Applied question(s) given by teacher after 1.4 2 **Constraints and Lagrange** Chalk & Talk [16] completion of each method and **Mathematics** multipliers verified by teacher to resolve any By Francis B. 2 Variable and points 1.5 Hildebrand query of students. 1.6 2 Strum-Liouville problems 1.7 1 Hamilton's principle For Active Learner: 1.8 1 Lagrange's equations Student will solve exercise given in Generalized dynamical 1.9 1 book after completion of Unit. entitites

1.10

1

constraints in dynamical

Academic Year : 2019 - 20 **Integrated M.Sc. Mathematics** Semester : IX Subject: 060090902 Calculus of Variations and Integral Equations systems 1.11 Small vibrations about 1 equilibrium 1.12 Normal coordinates 1 **Unit 2: Variational problems** [12] 2.1 2 Variational problems of For Slow Learner: Students must write answer of deformable bodies Ch#2 question(s) given by teacher after 2.2 1 Useful transformations Methods of Applied completion of each method and 2.3 3 Variational problem for elastic Unit Test -1 verified by teacher to resolve any Chalk & Talk **Mathematics** plate and 2 query of students. By Francis B. Rayleigh-Ritz method Assignment-2 2.4 3 Hildebrand 2.5 3 Semi direct method For Active Learner: Student will solve exercise given in book after completion of Unit. **Unit 3: Introduction to Integral Equations** Relations between differential [12] 3.1 1 and integral equations 3.2 1 The Green's function For Slow Learner: 3.3 1 Linear Equations in cause and Students must write answer of effect Ch#3 question(s) given by teacher after the influence function 3.4 1 completion of each method and Methods of Applied 3.5 2 Fredholm equations with verified by teacher to resolve any Unit Test -2 **Mathematics** Chalk & Talk separable kernels query of students. Bv Francis B. Assignment-3 Hilbert - Schmidt theory Hildebrand 3.6 1 For Active Learner: 3.7 1 Iterative methods for solving Student will solve exercise given in equations of the second kind book after completion of Unit. 1 The Neumann series 3.8 Fredholm theory 3.9 1 1 **Singular Integral Equations** 3.10

emeste	er : IX	Integrated M.Sc. Mathematics Subject: 060090902 Calculus of Variations and Integral Equations					Academic Year : 2019 -20		
	3.11	1	Iterative Scheme for solving Volterra Integral Equation of second kind						
Unit 4:	: Metho	ods to so	olve in integral equations		•		-		
[12]	4.1	2	Iterative approximations to characteristic functions	Ch#3 Methods of Applied Mathematics By Francis B. Hildebrand	Chalk & Talk	For Clove Loomon			
	4.2	2	Approximations of Fredholm equations by sets of algebraic equations			For Slow Learner: Students must write answer of question(s) given by teacher after completion of each method and			
	4.3	2	Approximate method of undermined coefficients			verified by teacher to resolve any query of students.	Internal Examination		
	4.4	2	The method of collocation				Assignment-4		
	4.5	2	The method of weighting functions			For Active Learner: Student will solve exercise given in			
	4.6	1	The method of least squares			book after completion of Unit.			
	4.7	1	Approximation of the kernel						

Text books:

- 1. Hilderbrand F. B., "Methods of Applied Mathematics", Prentice Hall Inc., 2nd Edition, 1965.
- 2. Kanwal R.P., "Generalized Functions: Theory and Technique", Academic Press, New York, 1983.
- 3. Mikhlin S.G., "Linear integral equation (translated from Russian)", Hindustan Book Agency, 1960.

Reference books:

- 1. Lovitt W.V.: "Linear integral equation", Dover Pub., 1st Ed. 1950.
- 2. Sneddon I.N.: "Mixed boundary value problems in potential theory", North Holland, 1966.

Course Objectives and Course Outcomes Mapping:

• Be familiar with the concepts of integral operator and functional: CO1, CO2

Semester : IX

Integrated M.Sc. Mathematics Subject: 060090902 Calculus of Variations and Integral Equations Academic Year : 2019 - 20

• Have acquired sound knowledge of Green's functions and Fredholm and Volterra equations: CO3, CO4, CO5,CO6.

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes						
		CO1	CO2	CO3	CO4	CO5	CO6	
1	Introduction of calculus of variations	~	√					
2	Variational problems		✓				√	
3	Introduction to Integral Equations			√	√	✓	~	
4	Methods to solve in integral equations				√	\checkmark	\checkmark	

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Semester : IX

Integrated M.Sc. Mathematics

Academic Year : 2019 -20

Subject: 060090902 Calculus of Variations and Integral Equations

Programme Outcomes and Course Outcomes mapping:

Programme Outcomes	Course Outcomes						
	C01	CO2	CO3	CO4	CO5	C06	
P01	\checkmark	\checkmark					
P02		\checkmark	\checkmark	\checkmark			
P03			✓	√	\checkmark	\checkmark	
P04				✓	\checkmark	\checkmark	

